Sains Malaysiana 54(3)(2025): 701-720
http://doi.org/10.17576/jsm-2025-5403-08
Prestasi Ciri
Morfo-Agronomi Padi (Oryza sativa L.)
dalam Kawasan Penanaman Kurang Subur
(Performance of
Morpho-Agronomic Characteristics of Rice (Oryza sativa L.) in Less
Fertile Cultivation Areas)
NUR SAKINAH MOHD YUSRI1, PUTERI NUR DINIE ELLINA ZULKAFLI1,
SELVIA DEWI POHAN2, SHAKIRAH MOHAMMAD NAHAR1, ASMUNI MOHD IKMAL1,
MUHAMMAD SHAFIE MD SAH3, SOBRI
HUSSEIN4, NADIATUR AKMAR ZULKIFLI1 & NORAZIYAH ABD AZIZ SHAMSUDIN1,*
1Jabatan Sains Biologi dan Bioteknologi,
Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Jabatan Biologi, Fakultas Matematika
dan Ilmu Pengetahuan Alam, Universitas Negeri Medan, Sumatera Utara, 20221,
Indonesia
3Pusat Penyelidikan Agrobiodiversiti dan
Persekitaran, Ibu Pejabat MARDI, Persiaran MARDI-UPM, 43400 Serdang, Selangor,
Malaysia
4Bahagian Agro dan Biosains, Agensi Nuklear Malaysia,
43000 Kajang, Selangor, Malaysia
Diserahkan: 6
Ogos 2024/Diterima: 16 Disember 2024
Abstrak
Kadar sara diri (SSL) beras Malaysia hanya kira-kira 63%,
jadi untuk mengekalkan kestabilan sosial dan ekonomi negara, pelbagai inisiatif
telah diambil untuk meningkatkan hasil padi. Penanaman padi di kawasan tanah
terbiar yang biasanya kurang subur boleh membantu meningkatkan produktiviti
padi tetapi adalah penting untuk mengenal pasti genotip yang beradaptasi dengan baik di tanah
kurang subur selain melakukan perawatan tanah. Penyelidikan ini bertujuan untuk mengenal pasti genotip
padi yang mempunyai adaptasi yang tinggi terhadap tanah yang kurang subur. Prestasi morfo-agronomi 58 genotip
padi moden dan tradisi telah dinilai di plot padi di Kompleks Rumah Tumbuhan, Universiti
Kebangsaan Malaysia bagi dua
musim penanaman. Kaedah amalan pengurusan plot adalah berdasarkan kepada ‘Rice Check’ oleh Jabatan Pertanian,
Malaysia. Dalam kedua-dua musim penanaman, perbezaan yang signifikan antara
genotip diperhatikan bagi kesemua tujuh ciri. Kesemua ciri mempunyai nilai
keterwarisan (H) yang tinggi (0.79
< H ≤ 1.00), kecuali
kandungan klorofil (CC) pada musim I (H = 0.51). Memandangkan pengaruh genetik lebih mendominasi persekitaran, ciri
dengan nilai keterwarisan yang tinggi boleh digunakan untuk pemilihan langsung.
Bagi kawasan kurang subur, genotip tradisi menunjukkan prestasi yang lebih baik
berbanding genotip moden daripada segi
hasil bijian (GY), panjang panikel (PL) dan bilangan panikel (PN), tetapi turut
mempunyai hari berbunga (DTF) yang lebih panjang dan lebih tinggi dalam
kedua-dua musim penanaman. Selain itu, hubungan korelasi positif yang
signifikan diperoleh antara ciri GY dengan PN (r=0.40 dan 0.58, p<0.01)
dan PL (r=0.45, p<0.001) untuk kedua-dua musim penanaman. Lima puluh
lapan genotip (58) padi telah dikelompokkan kepada 8 kluster berdasarkan tujuh
ciri yang dikaji pada kedua-dua musim penanaman. Genotip tradisi seperti
Towuti, Pongsu Seribu, Ulat Kuning, Huma Kuning Lenggong dan Lumut boleh
digunakan sebagai induk untuk membangunkan genotip padi baharu dengan semua ciri unggul seperti hasil tinggi,
adaptasi yang baik dalam tanah kurang subur atau sistem penanaman input rendah,
berketinggian sederhana dan tempoh matang yang lebih singkat dengan mengacukkan
genotip ini dengan genotip moden yang matang awal dan berketinggian sederhana.
Kata kunci: Genotip tradisi; hasil bijian; nutrien
tanah; pembiakbakaan; tekanan abiotik
Abstract
Malaysia's rice self-sufficiency rate (SSL) is only
approximately 63%, so to maintain social and economic stability in the nation,
numerous initiatives have been undertaken to boost rice yield. Planting rice in
the wasteland areas that are typically less fertile can help to increase rice
productivity, but it is crucial to identify genotypes that are well-adapted to
less fertile soil. This research aimed to identify rice genotypes that are
highly adaptable in less fertile soil. The morpho-agronomic performance of 58
modern and traditional rice genotypes was evaluated in paddy plots at the
Greenhouse Complex, Universiti Kebangsaan Malaysia for two planting seasons. The plot
management practices were conducted in accordance with the ‘Rice Check’
guidelines established by the Department of Agriculture, Malaysia. In both
growing seasons, significant differences between genotypes were observed for
all seven traits. All traits exhibited high heritability (H) values
(0.79 < H ≤ 1.00), except for chlorophyll content (CC) in season I (H = 0.51). Considering that genetic influences predominate over environmental
ones, traits with high heritability values can be used for direct selection.
Under low fertility condition, traditional rice genotypes showed better
performance in terms of grain yield (GY), panicle length (PL), and panicle
number (PN), although they were characterized by a longer day to flowering
(DTF) compared to modern rice genotypes across both planting seasons.
Additionally, a positive and significant correlation was obtained between GY with PN (r=0.40 and 0.58, p<0.01) and
PL (r=0.45, p<0.001) for both planting seasons. The 58 rice genotypes were
grouped into 8 clusters based on seven
studied traits for both growing season. Traditional
genotypes such as Towuti, Pongsu Seribu, Ulat Kuning, Huma Kuning Lenggong, and
Lumut can be used as parental lines to develop new genotypes of rice with all
the superior traits such as high yield, good adaptation under less fertile soil
or low input system, intermediate plant height and shorter maturity by crossing
them with modern genotypes that mature early and has intermediate plant height.
Keywords: Abiotic stress; breeding; grain yield; soil nutrients; traditional genotypes
RUJUKAN
Akhtar, N., Nazir, M.F., Rabnawaz, A.,
Mahmood, T., Safdar, M.E., Asif, M. & Rehman, A. 2011. Estimation of heritability, correlation and path coefficient
analysis in fine grain rice (Oryza sativa L.). The Journal of Animal and
Plant Sciences 21(4): 660-664.
Aminuddin, B.Y., Razak, A.H., Mohammud, C.H., Mohd Zain, M.
& Normah, M. 2003. An assessment of paddy soil degradation and its impact
on sustainable rice production. Malaysian
Journal of Soil Science 7: 45-56.
Anandrao, S.D., Singh, C.M., Suresh, B.G. & Lavanya,
G.R. 2011. Evaluation of rice hybrids for yield and yield component characters
under North East Plain Zone. The
Allahabad Farmer Journal 67(1): 63-68.
Bhattacharyya, R., Roy, B., Kabi, M.C. & Basu, A.K.
2007. Character association and path analysis of seed yield and its attributes
in rice as affected by bio-inoculums under tropical environment. Tropical Agricultural Research and Extension 10: 23-28.
Chang, T.T., Zhang, Y.J., Xu, H.L., Shao, X.H., Xu, Q.C.,
Li, F.L., Yu, L.N. & Zhang, Z.Y. 2018. Osmotic adjustment and up-regulation
expression of stress-responsive genes in tomato induced by soil salinity
resulted from nitrate fertilization. International
Journal of Agricultural and Biological Engineering 11: 126-136.
Chong, I.Q., Azman, E.A., Ng, J.F., Ismail, R., Awang, A.,
Hasbullah, N.A., Murdad, R., Ahmed, O.H., Musah, A.A., Alam, M.A., Besar, N.A.,
Tajidin, N.E. & Jalloh, M.B. 2022. Improving selected chemical properties
of a paddy soil in Sabah amended with calcium silicate: A laboratory incubation
study. Sustainability 14(20): 13214.
Choudhary, O. & Kharche, V. 2018. Soil salinity and sodicity. Soil
Science: An Introduction. Chapter 12. hlm. 353-384.
Datta, K.K. & de Jong, C. 2002. Adverse effect of
waterlogging and soil salinity on crop and land productivity in northwest
region of Haryana, India. Agricultural
Water Management 57: 223-238.
de Mendiburu, F. 2023. agricolae: statistical procedures for agricultural research.
R package version 1.3-7.
https://cran.r-project.org/web/packages/agricolae/index.html.
Deivaseeno, D. & Nisha, T.G. 2023. Rice and paddy industry in Malaysia: Governance and
policies, research trends, technology adoption and resilience. Frontiers in
Sustainable Food Systems 7: 1-22.
Dhurai, S.Y., Reddy, D.M. & Bhati, P.K. 2014.
Correlation and path coefficient analysis for yield and quality traits under
organic fertilizer management in rice (Oryza
sativa L.). Electronic Journal of
Plant Breeding 5(3): 581-587.
Eliazer Nelson, A.R.L., Ravichandran, K. & Antony, U. 2019. The impact of the green revolution
on indigenous crops of India. J. Ethn. Food 6: 8. https://doi.org/10.1186/s42779-019-0011-9
Graves, S., Piepho, H.P. & Selzer, L. 2019.
multcompView: Visualizations of paired comparisons. CRAN.
https://cran.r-project.org/web/packages/multcompView/index.html
Huntley, B.J. 2023. Chapter 6: Soil water nutrients. Ecology of Angola: Terrestrial Biomes and
Ecoregions. Springer. hlm. 127-147.
Ismail, M.H. & Junusi, R. 2009. Determining and mapping
soil nutrient content using geostatistical technique in a Durian orchard in
Malaysia. Journal of Agricultural Science 1(1): 86-91.
Jabatan Pertanian Malaysia (DOA). 2022. Rice Check: Padi.
Jabatan Pertanian Malaysia (DOA). 2022. MSSS – DOA Soil
familiarization tour 2022: Guideline to soil profile description,
identification of soil series and soil evaluation. Putrajaya: Ministry of
Agriculture and Food Security.
Jabatan Pertanian Malaysia (DOA). 1997. Ratings for
Chemical Properties of Soil in Peninsular Malaysia. Putrajaya: Ministry of
Agriculture and Agro Based Industry.
Jobson, J. 1991. Confidence regions for the mean-variance
efficient set: An alternative approach to estimation risk. The Review of Quantitative
Finance and Accounting 1(3): 235.
Kamarudin, H., Adnan, N.A., Mispan, M.R. & Athirah, A.A.
2016. Spatial variability of soil nutrient in paddy plantation: Sites FELCRA
Seberang Perak. IOP Conference Series:
Earth and Environmental Science 37(1): 012047.
Kassambara, A. & Mundt, F. 2020. factoextra: Extract and
visualize the results of multivariate data analyses. Version 1.0.7.
https://www.scirp.org/reference/referencespapers?referenceid=3067217
Kwon, S.J., Ha, W.G., Hwang, H.G., Yang, S.J., Choi, H.C.,
Moon, H.P. & Ahn, S.N. 2002. Relationship between heterosis and genetic
divergence in ‘Tongil’-type rice. Plant
Breeding 121: 487-492.
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. &
Hornik, K. 2023. cluster: Finding groups in data. Version 2.1.8.
https://cran.r-project.org/web/packages/cluster/index.html
Mohd Ikmal, A., Noraziyah, A.A.S. & Wickneswari, R.
2021. Incorporating drought and submergence tolerance QTL in rice (Oryza sativa L.) - The effects under
reproductive stage drought and vegetative stage submergence stresses. Plants 10(2): 225.
Mohd Ikmal, A., Nurasyikin, Z., Tuan Nur Aqlili Riana, T.A.,
Puteri Dinie Ellina, Z., Wickneswari, R. & Noraziyah, A.A.S. 2019. Drought
yield QTL (qDTY) with consistent effects on morphological and
agronomical traits of two populations of new rice (Oryza sativa) lines. Plants 8(6): 186.
Mohd. Hafiz, A.M. 2023. Hasil padi rendah: Tiga
perkara asas utama masih gagal selesai. Utusan Malaysia, 18 Mei.
Muhammad Naim, F.A.R., Mohamad Najib, M.Y., Shahida, H.,
Elixson, S. & Asfaliza, R. 2015. Pengurusan kesuburan tanah dan nutrien untuk tanaman padi di Malaysia. Buletin Teknologi MARDI Bil. 8: 37-44.
Murty, B.R. & Arunachalam, V. 1966. The nature of
genetic diversity in relation to breeding system in crop plants. Indian Journal of Genetic and Plant Breeding 26(A): 188-198.
Nik Muhammad Zawawi, S. 2024. Malaysia hadapi cabaran
berkaitan kesuburan tanah. Harakahdaily 14 November.
Piepho, H.P. 2004. An algorithm for a letter-based
representation of all-pairwise comparisons. Journal
of Computational and Graphical Statistics 13(2): 456-466.
https://www.tandfonline.com/doi/abs/10.1198/1061860043515
Prajapati, M.K., Singh, C.M., Babu, G.S., Lavanya, G.R.
& Jadhav, P. 2011. Genetic parameters for grain yield and its component
characters in rice. Electronic Journal of
Plant Breeding 2(2): 235-238.
R Core Team. 2023. _R: A Language and Environment for
Statistical Computing_. R Foundation for Statistical Computing, Vienna,
Austria.
Ravikumar, B.N.V.S.R., Naga Kumari, P., Venkata Ramana Rao,
P., Girija Rani, M., Satyanarayana, P.V., Chamundeswari, N., Mohan
Vishuvardhan, K., Suryanarayana, Y., Bharathalakshmi, M. & Vishnuvardhan
Reddy, A. 2015. Principal component analysis and character association for
yield components in rice (Oryza sativa L.) cultivars suitable for irrigated ecosystem. Current Biotica 9(1): 25-35.
Saha, S.R., Hassan, L., Haque, A. & Islam, M.M. 2019.
Genetic variability, heritability, correlation and path analyses of yield
components in tradisional rice (Oryza
sativa L.) landraces. Journal of
Bangladesh Agricultural University 17(1): 26-32.
Sarena, C.O., Ashraf, S. & Siti, A.T. 2019. The Status of the Paddy and Rice Industry in Malaysia. Kuala Lumpur: Khazanah Research Institute.
Sharma, S., Gupta, N., Chakkal, A.S., Sharma, N., Alamri,
S., Siddiqui, M.H. & Haider, F.U. 2023. Changes in enzyme activities in
salt-affected soils during incubation study of diverse particle sizes of rice
straw. Agriculture 13(9): 1694.
Shechtman, O. 2013. The coefficient of variation as an index
of measurement reliability. In Methods of Clinical Epidemiology, disunting
oleh Doi, S. & Williams, G. Berlin, Heidelberg: Springer. hlm. 39-49.
Shen, W., Long, Y., Qiu, Z., Gao, N., Masuda, Y., Itoh, H.,
Ohba, H., Shiratori, Y., Rajasekar, A. & Senoo, K. 2022. Investigation of
rice yields and critical N losses from paddy soil under different N
fertilization rates with iron application. International
Journal of Environmental Research and Public Health 19(14): 8707.
Shrestha, J., Subedi, S., Kushwaha, U. & Maharjan,
B. 2021. Evaluation of growth and yield
traits in rice genotypes using multivariate analysis. Heliyon 7(9): e07940.
Siddique, M.N.A., Susmita, B., Habib, M.A., Das, K., Hassan,
L., Farah, D. & Sarker, U. 2022. Effect of land fertility gradient on yield
of rice. International Journal of
Innovative Research in Technology 9: 162-168.
Singh, M., Kumar, K. & Singh, R.P. 2007. Study of
coefficient of variation, heritability and genetic advance in hybrid rice. Oryza 44(1): 160-162.
Singh, S.K., Singh, C.M. & Lal, G.M. 2011. Assessment of
genetic variability for yield and its component characters in rice (Oryza sativa L.). Research in Plant Biology 1(4): 73-76.
Soetan, V.K.O., Olaiya, C.O. & Oyewole, O.E. 2010. The importance of mineral elements for
humans, domestic animals and plants: A review. African Journal of Food Science 4(5): 200-222.
Soni, S.K., Yadav, V.K., Pratap, N., Bhadana, V.P. &
Ram, T. 2013. Selection criteria, yield relationship with component traits and
grouping of tropical Japonica, Indica lines and derived hybrids
of rice (Oryza sativa L.). SAARC Journal of Agriculture 11(2): 17-32.
Souza, E. & Sorrells, M. 1991. Relationships among 70
North American oat germplasms: I. Cluster analysis using quantitative
characters. Crop Science 31(3):
599-605.
Sultana, T. & Ghafoor, A. 2009. Botanical and molecular
evidence of landraces from the germplasm exclusively collected from
Baluchistan, a centre of diversity for Llens
culinaris. African Journal of
Biotechnology 8(20): 5310-5315.
Surekha, K., Reddy, K.P.C., Kumari, A.P.P. & Cruz,
P.C.S. 2006. Effect of straw on yield components of rice (Oryza sativa L.) under rice‐rice cropping system.
Crop/forage/soil management/grassland utilisation effect of straw on yield
components of rice (Oryza sativa L.)
under rice cropping system. Journal of
Agronomy & Crop Science 101: 92-101.
Theeba Manickam, Illani Zuraihah Ibrahim, Muhammad Zamir
Rashid, Mohd Naim Fadzli Abdul Rani, Mohd Aziz Rasul, Norziana Zin Zawawi,
Noorsuhaila Abu Bakar, Muhammad Syahren Adzahar, Nor Syahidah Mat Sam, Hasliana
Kamaruddin, Nor Fadilah Abd Halim, Mohd Najib Mohd Yusoff & Haryati Mansor.
2020. RiceFERT: Pengurusan baja secara lokasi spesifik untuk tanaman padi di
Malaysia. Buletin Teknologi MARDI Bil. 19: 11-23.
Tiwari, D.N., Tripathi, S.R., Tripathi, M.P., Khatri, N.
& Bastola, B.R. 2019. Genetic variability and correlation coefficients of
major traits in early maturing rice under rainfed lowland environments of
Nepal. Advances in Agriculture 2019: 5975901.
Tucker, M.R. 1999. Essential plant nutrients. Their presence
in North Carolina soils and role in plant nutrition. NCDA & CS Agronomic Division.
https://digital.ncdcr.gov/Documents/Detail/essential-plant-nutrients-their-presence-in-north-carolina-soils-and-role-in-plant-nutrition/2558624
USDA. 2022. Rice Sector at a Glance. USDA Economic
Research Service.https://www.ers.usda.gov/topics/crops/rice/rice-sector-at-a-glance/ (accessed 12.31.23)
Vu, V.Q. 2011. ggbiplot: A Grammar of Graphics
Implementation of Biplots. https://github.com/vqv/ggbiplot
Wan Mohd Noor Hafiz Wan Mansor. 2024.
El Nino beri kesan kepada pertanian. Sinar
Harian, 6. https://www.kpkm.gov.my/images/06-informasi/keratan-akhbar/2024/mac/04.pdf
Wei, H.H., Yang, Y.L., Shao, X.Y., Shi, T.Y., Meng,
T.Y., Lu, Y., Tao, Y., Li, X.Y., Ding, E.H., Chen, Y.L. & Dai, Q.G. 2020. Higher leaf area through leaf width and lower leaf angle
were the primary morphological traits for yield advantage of japonica/indica hybrids. Journal of Integrative
Agriculture 19(2): 483-494.
Wei, T. & Simko, V. 2023. corrplot: Visualization of a correlation
matrix. Version 0.95. https://rdrr.io/cran/corrplot/
Wickham, H. 2016. ggplot2: Elegant Graphics for Data
Analysis. 2nd ed. Springer.
https://link.springer.com/book/10.1007/978-3-319-24277-4
Wickham, H., François, R., Henry, L., Müller, K. &
Vaughan, D. 2023. dplyr: A grammar of data manipulation. R package version
1.1.4. https://dplyr.tidyverse.org
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan,
L.D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T.L., Miller, E., Bache, S.M., Müller, K., Ooms, J., Robinson, D.,
Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K. &
Yutani, H. 2019. Welcome to the Tidyverse. Journal
of Open Source Software 4(43): 1686.
https://joss.theoj.org/papers/10.21105/joss.01686
*Pengarang untuk surat-menyurat; email: nora_aziz@ukm.edu.my
|