Sains Malaysiana 54(3)(2025): 701-720

http://doi.org/10.17576/jsm-2025-5403-08

 

Prestasi Ciri Morfo-Agronomi Padi (Oryza sativa L.) dalam Kawasan Penanaman Kurang Subur

(Performance of Morpho-Agronomic Characteristics of Rice (Oryza sativa L.) in Less Fertile Cultivation Areas)

 

NUR SAKINAH MOHD YUSRI1, PUTERI NUR DINIE ELLINA ZULKAFLI1, SELVIA DEWI POHAN2, SHAKIRAH MOHAMMAD NAHAR1, ASMUNI MOHD IKMAL1, MUHAMMAD SHAFIE MD SAH3, SOBRI HUSSEIN4, NADIATUR AKMAR ZULKIFLI1 & NORAZIYAH ABD AZIZ SHAMSUDIN1,*

 

1Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Jabatan Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Medan, Sumatera Utara, 20221, Indonesia

3Pusat Penyelidikan Agrobiodiversiti dan Persekitaran, Ibu Pejabat MARDI, Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia

4Bahagian Agro dan Biosains, Agensi Nuklear Malaysia, 43000 Kajang, Selangor, Malaysia

 

Diserahkan: 6 Ogos 2024/Diterima: 16 Disember 2024

 

 

Abstrak

Kadar sara diri (SSL) beras Malaysia hanya kira-kira 63%, jadi untuk mengekalkan kestabilan sosial dan ekonomi negara, pelbagai inisiatif telah diambil untuk meningkatkan hasil padi. Penanaman padi di kawasan tanah terbiar yang biasanya kurang subur boleh membantu meningkatkan produktiviti padi tetapi adalah penting untuk mengenal pasti genotip yang beradaptasi dengan baik di tanah kurang subur selain melakukan perawatan tanah. Penyelidikan ini bertujuan untuk mengenal pasti genotip padi yang mempunyai adaptasi yang tinggi terhadap tanah yang kurang subur. Prestasi morfo-agronomi 58 genotip padi moden dan tradisi telah dinilai di plot padi di Kompleks Rumah Tumbuhan, Universiti Kebangsaan Malaysia bagi dua musim penanaman. Kaedah amalan pengurusan plot adalah berdasarkan kepada ‘Rice Check’ oleh Jabatan Pertanian, Malaysia. Dalam kedua-dua musim penanaman, perbezaan yang signifikan antara genotip diperhatikan bagi kesemua tujuh ciri. Kesemua ciri mempunyai nilai keterwarisan (H) yang tinggi (0.79 < H ≤ 1.00), kecuali kandungan klorofil (CC) pada musim I (H = 0.51). Memandangkan pengaruh genetik lebih mendominasi persekitaran, ciri dengan nilai keterwarisan yang tinggi boleh digunakan untuk pemilihan langsung. Bagi kawasan kurang subur, genotip tradisi menunjukkan prestasi yang lebih baik berbanding  genotip moden daripada segi hasil bijian (GY), panjang panikel (PL) dan bilangan panikel (PN), tetapi turut mempunyai hari berbunga (DTF) yang lebih panjang dan lebih tinggi dalam kedua-dua musim penanaman. Selain itu, hubungan korelasi positif yang signifikan diperoleh antara ciri GY dengan PN (r=0.40 dan 0.58, p<0.01) dan PL (r=0.45, p<0.001) untuk kedua-dua musim penanaman. Lima puluh lapan genotip (58) padi telah dikelompokkan kepada 8 kluster berdasarkan tujuh ciri yang dikaji pada kedua-dua musim penanaman. Genotip tradisi seperti Towuti, Pongsu Seribu, Ulat Kuning, Huma Kuning Lenggong dan Lumut boleh digunakan sebagai induk untuk membangunkan genotip padi baharu  dengan semua ciri unggul seperti hasil tinggi, adaptasi yang baik dalam tanah kurang subur atau sistem penanaman input rendah, berketinggian sederhana dan tempoh matang yang lebih singkat dengan mengacukkan genotip ini dengan genotip moden yang matang awal dan berketinggian sederhana.

Kata kunci: Genotip tradisi; hasil bijian; nutrien tanah; pembiakbakaan; tekanan abiotik

 

Abstract

Malaysia's rice self-sufficiency rate (SSL) is only approximately 63%, so to maintain social and economic stability in the nation, numerous initiatives have been undertaken to boost rice yield. Planting rice in the wasteland areas that are typically less fertile can help to increase rice productivity, but it is crucial to identify genotypes that are well-adapted to less fertile soil. This research aimed to identify rice genotypes that are highly adaptable in less fertile soil. The morpho-agronomic performance of 58 modern and traditional rice genotypes was evaluated in paddy plots at the Greenhouse Complex, Universiti Kebangsaan Malaysia for two planting seasons. The plot management practices were conducted in accordance with the ‘Rice Check’ guidelines established by the Department of Agriculture, Malaysia. In both growing seasons, significant differences between genotypes were observed for all seven traits. All traits exhibited high heritability (H) values (0.79 < H ≤ 1.00), except for chlorophyll content (CC) in season I (H = 0.51). Considering that genetic influences predominate over environmental ones, traits with high heritability values can be used for direct selection. Under low fertility condition, traditional rice genotypes showed better performance in terms of grain yield (GY), panicle length (PL), and panicle number (PN), although they were characterized by a longer day to flowering (DTF) compared to modern rice genotypes across both planting seasons. Additionally, a positive and significant correlation was obtained between GY with PN (r=0.40 and 0.58, p<0.01) and PL (r=0.45, p<0.001) for both planting seasons. The 58 rice genotypes were grouped into 8 clusters based on seven studied traits for both growing season. Traditional genotypes such as Towuti, Pongsu Seribu, Ulat Kuning, Huma Kuning Lenggong, and Lumut can be used as parental lines to develop new genotypes of rice with all the superior traits such as high yield, good adaptation under less fertile soil or low input system, intermediate plant height and shorter maturity by crossing them with modern genotypes that mature early and has intermediate plant height.

Keywords: Abiotic stress; breeding; grain yield; soil nutrients; traditional genotypes

 

RUJUKAN

Akhtar, N., Nazir, M.F., Rabnawaz, A., Mahmood, T., Safdar, M.E., Asif, M. & Rehman, A. 2011. Estimation of heritability, correlation and path coefficient analysis in fine grain rice (Oryza sativa L.). The Journal of Animal and Plant Sciences 21(4): 660-664.

Aminuddin, B.Y., Razak, A.H., Mohammud, C.H., Mohd Zain, M. & Normah, M. 2003. An assessment of paddy soil degradation and its impact on sustainable rice production. Malaysian Journal of Soil Science 7: 45-56.

Anandrao, S.D., Singh, C.M., Suresh, B.G. & Lavanya, G.R. 2011. Evaluation of rice hybrids for yield and yield component characters under North East Plain Zone. The Allahabad Farmer Journal 67(1): 63-68.

Bhattacharyya, R., Roy, B., Kabi, M.C. & Basu, A.K. 2007. Character association and path analysis of seed yield and its attributes in rice as affected by bio-inoculums under tropical environment. Tropical Agricultural Research and Extension 10: 23-28.

Chang, T.T., Zhang, Y.J., Xu, H.L., Shao, X.H., Xu, Q.C., Li, F.L., Yu, L.N. & Zhang, Z.Y. 2018. Osmotic adjustment and up-regulation expression of stress-responsive genes in tomato induced by soil salinity resulted from nitrate fertilization. International Journal of Agricultural and Biological Engineering 11: 126-136.  

Chong, I.Q., Azman, E.A., Ng, J.F., Ismail, R., Awang, A., Hasbullah, N.A., Murdad, R., Ahmed, O.H., Musah, A.A., Alam, M.A., Besar, N.A., Tajidin, N.E. & Jalloh, M.B. 2022. Improving selected chemical properties of a paddy soil in Sabah amended with calcium silicate: A laboratory incubation study. Sustainability 14(20): 13214.

Choudhary, O. & Kharche, V. 2018. Soil salinity and sodicity. Soil Science: An Introduction. Chapter 12. hlm. 353-384.

Datta, K.K. & de Jong, C. 2002. Adverse effect of waterlogging and soil salinity on crop and land productivity in northwest region of Haryana, India. Agricultural Water Management 57: 223-238.

de Mendiburu, F. 2023. agricolae: statistical procedures for agricultural research. R package version 1.3-7. https://cran.r-project.org/web/packages/agricolae/index.html.

Deivaseeno, D. & Nisha, T.G. 2023. Rice and paddy industry in Malaysia: Governance and policies, research trends, technology adoption and resilience. Frontiers in Sustainable Food Systems 7: 1-22.

Dhurai, S.Y., Reddy, D.M. & Bhati, P.K. 2014. Correlation and path coefficient analysis for yield and quality traits under organic fertilizer management in rice (Oryza sativa L.). Electronic Journal of Plant Breeding 5(3): 581-587.

Eliazer Nelson, A.R.L., Ravichandran, K. & Antony, U. 2019. The impact of the green revolution on indigenous crops of India. J. Ethn. Food 6: 8. https://doi.org/10.1186/s42779-019-0011-9

Graves, S., Piepho, H.P. & Selzer, L. 2019. multcompView: Visualizations of paired comparisons. CRAN. https://cran.r-project.org/web/packages/multcompView/index.html 

Huntley, B.J. 2023. Chapter 6: Soil water nutrients. Ecology of Angola: Terrestrial Biomes and Ecoregions. Springer. hlm. 127-147.

Ismail, M.H. & Junusi, R. 2009. Determining and mapping soil nutrient content using geostatistical technique in a Durian orchard in Malaysia. Journal of Agricultural Science 1(1): 86-91.

Jabatan Pertanian Malaysia (DOA). 2022. Rice Check: Padi.

Jabatan Pertanian Malaysia (DOA). 2022. MSSS – DOA Soil familiarization tour 2022: Guideline to soil profile description, identification of soil series and soil evaluation. Putrajaya: Ministry of Agriculture and Food Security.

Jabatan Pertanian Malaysia (DOA). 1997. Ratings for Chemical Properties of Soil in Peninsular Malaysia. Putrajaya: Ministry of Agriculture and Agro Based Industry.

Jobson, J. 1991. Confidence regions for the mean-variance efficient set: An alternative approach to estimation risk. The Review of Quantitative Finance and Accounting 1(3): 235.

Kamarudin, H., Adnan, N.A., Mispan, M.R. & Athirah, A.A. 2016. Spatial variability of soil nutrient in paddy plantation: Sites FELCRA Seberang Perak. IOP Conference Series: Earth and Environmental Science 37(1): 012047.

Kassambara, A. & Mundt, F. 2020. factoextra: Extract and visualize the results of multivariate data analyses. Version 1.0.7. https://www.scirp.org/reference/referencespapers?referenceid=3067217

Kwon, S.J., Ha, W.G., Hwang, H.G., Yang, S.J., Choi, H.C., Moon, H.P. & Ahn, S.N. 2002. Relationship between heterosis and genetic divergence in ‘Tongil’-type rice. Plant Breeding 121: 487-492.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. 2023. cluster: Finding groups in data. Version 2.1.8. https://cran.r-project.org/web/packages/cluster/index.html

Mohd Ikmal, A., Noraziyah, A.A.S. & Wickneswari, R. 2021. Incorporating drought and submergence tolerance QTL in rice (Oryza sativa L.) - The effects under reproductive stage drought and vegetative stage submergence stresses. Plants 10(2): 225.

Mohd Ikmal, A., Nurasyikin, Z., Tuan Nur Aqlili Riana, T.A., Puteri Dinie Ellina, Z., Wickneswari, R. & Noraziyah, A.A.S. 2019. Drought yield QTL (qDTY) with consistent effects on morphological and agronomical traits of two populations of new rice (Oryza sativa) lines. Plants 8(6): 186.

Mohd. Hafiz, A.M. 2023. Hasil padi rendah: Tiga perkara asas utama masih gagal selesai. Utusan Malaysia, 18 Mei.

Muhammad Naim, F.A.R., Mohamad Najib, M.Y., Shahida, H., Elixson, S. & Asfaliza, R. 2015. Pengurusan kesuburan tanah dan nutrien untuk tanaman padi di Malaysia. Buletin Teknologi MARDI Bil. 8: 37-44.

Murty, B.R. & Arunachalam, V. 1966. The nature of genetic diversity in relation to breeding system in crop plants. Indian Journal of Genetic and Plant Breeding 26(A): 188-198.

Nik Muhammad Zawawi, S. 2024. Malaysia hadapi cabaran berkaitan kesuburan tanah. Harakahdaily 14 November.

Piepho, H.P. 2004. An algorithm for a letter-based representation of all-pairwise comparisons. Journal of Computational and Graphical Statistics 13(2): 456-466. https://www.tandfonline.com/doi/abs/10.1198/1061860043515

Prajapati, M.K., Singh, C.M., Babu, G.S., Lavanya, G.R. & Jadhav, P. 2011. Genetic parameters for grain yield and its component characters in rice. Electronic Journal of Plant Breeding 2(2): 235-238.

R Core Team. 2023. _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria.

Ravikumar, B.N.V.S.R., Naga Kumari, P., Venkata Ramana Rao, P., Girija Rani, M., Satyanarayana, P.V., Chamundeswari, N., Mohan Vishuvardhan, K., Suryanarayana, Y., Bharathalakshmi, M. & Vishnuvardhan Reddy, A. 2015. Principal component analysis and character association for yield components in rice (Oryza sativa L.) cultivars suitable for irrigated ecosystem. Current Biotica 9(1): 25-35.

Saha, S.R., Hassan, L., Haque, A. & Islam, M.M. 2019. Genetic variability, heritability, correlation and path analyses of yield components in tradisional rice (Oryza sativa L.) landraces. Journal of Bangladesh Agricultural University 17(1): 26-32.

Sarena, C.O., Ashraf, S. & Siti, A.T. 2019. The Status of the Paddy and Rice Industry in Malaysia. Kuala Lumpur: Khazanah Research Institute.

Sharma, S., Gupta, N., Chakkal, A.S., Sharma, N., Alamri, S., Siddiqui, M.H. & Haider, F.U. 2023. Changes in enzyme activities in salt-affected soils during incubation study of diverse particle sizes of rice straw. Agriculture 13(9): 1694.

Shechtman, O. 2013. The coefficient of variation as an index of measurement reliability. In Methods of Clinical Epidemiology, disunting oleh Doi, S. & Williams, G. Berlin, Heidelberg: Springer. hlm. 39-49.

Shen, W., Long, Y., Qiu, Z., Gao, N., Masuda, Y., Itoh, H., Ohba, H., Shiratori, Y., Rajasekar, A. & Senoo, K. 2022. Investigation of rice yields and critical N losses from paddy soil under different N fertilization rates with iron application. International Journal of Environmental Research and Public Health 19(14): 8707.

Shrestha, J., Subedi, S., Kushwaha, U. & Maharjan, B. 2021. Evaluation of growth and yield traits in rice genotypes using multivariate analysis. Heliyon 7(9): e07940.

Siddique, M.N.A., Susmita, B., Habib, M.A., Das, K., Hassan, L., Farah, D. & Sarker, U. 2022. Effect of land fertility gradient on yield of rice. International Journal of Innovative Research in Technology 9: 162-168.

Singh, M., Kumar, K. & Singh, R.P. 2007. Study of coefficient of variation, heritability and genetic advance in hybrid rice. Oryza 44(1): 160-162.

Singh, S.K., Singh, C.M. & Lal, G.M. 2011. Assessment of genetic variability for yield and its component characters in rice (Oryza sativa L.). Research in Plant Biology 1(4): 73-76.

Soetan, V.K.O., Olaiya, C.O. & Oyewole, O.E. 2010.  The importance of mineral elements for humans, domestic animals and plants: A review. African Journal of Food Science 4(5): 200-222.

Soni, S.K., Yadav, V.K., Pratap, N., Bhadana, V.P. & Ram, T. 2013. Selection criteria, yield relationship with component traits and grouping of tropical Japonica, Indica lines and derived hybrids of rice (Oryza sativa L.). SAARC Journal of Agriculture 11(2): 17-32.

Souza, E. & Sorrells, M. 1991. Relationships among 70 North American oat germplasms: I. Cluster analysis using quantitative characters. Crop Science 31(3): 599-605.

Sultana, T. & Ghafoor, A. 2009. Botanical and molecular evidence of landraces from the germplasm exclusively collected from Baluchistan, a centre of diversity for Llens culinaris. African Journal of Biotechnology 8(20): 5310-5315.

Surekha, K., Reddy, K.P.C., Kumari, A.P.P. & Cruz, P.C.S. 2006. Effect of straw on yield components of rice (Oryza sativa L.) under rice‐rice cropping system. Crop/forage/soil management/grassland utilisation effect of straw on yield components of rice (Oryza sativa L.) under rice cropping system. Journal of Agronomy & Crop Science 101: 92-101.

Theeba Manickam, Illani Zuraihah Ibrahim, Muhammad Zamir Rashid, Mohd Naim Fadzli Abdul Rani, Mohd Aziz Rasul, Norziana Zin Zawawi, Noorsuhaila Abu Bakar, Muhammad Syahren Adzahar, Nor Syahidah Mat Sam, Hasliana Kamaruddin, Nor Fadilah Abd Halim, Mohd Najib Mohd Yusoff & Haryati Mansor. 2020. RiceFERT: Pengurusan baja secara lokasi spesifik untuk tanaman padi di Malaysia. Buletin Teknologi MARDI Bil. 19: 11-23.

Tiwari, D.N., Tripathi, S.R., Tripathi, M.P., Khatri, N. & Bastola, B.R. 2019. Genetic variability and correlation coefficients of major traits in early maturing rice under rainfed lowland environments of Nepal. Advances in Agriculture 2019: 5975901.

Tucker, M.R. 1999. Essential plant nutrients. Their presence in North Carolina soils and role in plant nutrition. NCDA & CS Agronomic Division. https://digital.ncdcr.gov/Documents/Detail/essential-plant-nutrients-their-presence-in-north-carolina-soils-and-role-in-plant-nutrition/2558624

USDA. 2022. Rice Sector at a Glance. USDA Economic Research Service.https://www.ers.usda.gov/topics/crops/rice/rice-sector-at-a-glance/ (accessed 12.31.23)

Vu, V.Q. 2011. ggbiplot: A Grammar of Graphics Implementation of Biplots. https://github.com/vqv/ggbiplot 

Wan Mohd Noor Hafiz Wan Mansor. 2024. El Nino beri kesan kepada pertanian. Sinar Harian, 6. https://www.kpkm.gov.my/images/06-informasi/keratan-akhbar/2024/mac/04.pdf

Wei, H.H., Yang, Y.L., Shao, X.Y., Shi, T.Y., Meng, T.Y., Lu, Y., Tao, Y., Li, X.Y., Ding, E.H., Chen, Y.L. & Dai, Q.G. 2020. Higher leaf area through leaf width and lower leaf angle were the primary morphological traits for yield advantage of japonica/indica hybrids. Journal of Integrative Agriculture 19(2): 483-494.

Wei, T. & Simko, V. 2023. corrplot: Visualization of a correlation matrix. Version 0.95. https://rdrr.io/cran/corrplot/

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Springer. https://link.springer.com/book/10.1007/978-3-319-24277-4

Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D. 2023. dplyr: A grammar of data manipulation. R package version 1.1.4. https://dplyr.tidyverse.org

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M., Müller, K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K. & Yutani, H. 2019. Welcome to the Tidyverse. Journal of Open Source Software 4(43): 1686. https://joss.theoj.org/papers/10.21105/joss.01686

 

 

*Pengarang untuk surat-menyurat; email: nora_aziz@ukm.edu.my

 

 

 

 

 

 

 

           

sebelumnya